CONTRIBUTION A L'ETUDE DES COMPOSES FLUORES TERNAIRES DU VANADIUM + II

C. CROS, R. FEURER et M. POUCHARD

Laboratoire de Chimie du Solide du C.N.R.S., Université de BORDEAUX I, 351 cours de la Libération, 33405 Talence (France)

RESUME

Les composés fluorés du vanadium + II sont peu nombreux et leur préparation s'avère difficile. En accord avec les résultats antérieurs, trois fluorures ternaires seulement ont été mis en évidence, pour l'ensemble des systèmes MF-VF₂ (M = élément alcalin) : NaVF₃, KVF₃ et RbVF₃. Une dismutation partielle ou totale du vanadium + II se produit dans tous les cas. Les structures de NaVF₃, KVF₃ et RbVF₃ ont été précisées. Les fluorures ternaires de formulation MVF₃ ont été comparés à ceux des autres éléments 3d.

SUMMARY

Very few vanadium (+ II) fluorides are known and some difficulty is experienced in preparing them. In accordance with previous results, only three ternary fluorides, $NaVF_3$, KVF_3 and $RbVF_3$, may be prepared in the systems $MF-VF_2$, where M is an alkali element. Whatever MF/VF_2 ratio a partial or a total disproportionation of vanadium + II accurs. The structures of $NaVF_3$, KVF_3 and $RbVF_3$ have been defined. The ternary compounds of MVF_3 formulation have been compared with those of other 3d elements.

Peu de composés halogénés binaires et ternaires du vanadium + II sont connus et leur préparation s'avère le plus souvent délicate par suite d'une tendance marquée à l'oxydation. Ce comportement s'explique par le fait que, contrairement aux autres éléments 3d, le titane et le chrome exceptés, le vanadium est caractérisé par une grande stabilité des degrés d'oxydation les plus élevés [1].

Les difficultés d'obtention de ces composés se manifestent en particulier dans le cas des fluorures de vanadium +II. En effet, si des études déjà anciennes ont été entreprises sur les halogénures VCl₂, VBr₂ et VI₂, ainsi que sur les combinaisons qu'ils forment avec les halogénures alcalins correspondants, ce n'est que récemment que le difluorure VF₂ a pu être préparé dans de bonnes conditions [2], [3], [4].

Les seuls travaux connus, relatifs aux composés fluorés ternaires du vanadium + II, ont été réalisés par M.W. Shafer[3]. Cet auteur a montré qu'il existait des combinaisons de formule générale MVF₃ (M = Na, K, Rb), mais qu'il était impossible de les obtenir à l'état pur, car il produisait toujours une dismutation partielle du vanadium + II $(3V^{2+} \rightarrow 2V^{3+} + V)$.

L'étude des "bronzes fluorés" M_XVF_3 , dans lesquels le vanadium se trouvait simultanément aux degrés d'oxydation + II et + III, nous avait amenés à aborder l'étude des phases limites MVF_3 [5]. En accord avec les résultats de M.W. Shafer, nous avions signalé que pour des valeurs de x proches de 1, il se produisait effectivement une dismutation partielle du vanadium + II, et que le système étudié se compliquait alors considérablement. Cependant, il nous était apparu que la connaissance des "bronzes fluorés" pouvait contribuer, dans une certaine mesure, à une meilleure compréhension des phénomènes de dismutation [6].

PARTIE EXPERIMENTALE

Le difluorure VF_2 a été préparé par fluoration ménagée à 650°C du dichlorure VCl_2 au moyen d'un mélange gazeux H_2 ,HFdans un rapport sensiblement égal à 30 pour 1 [4] :

 $VC1_2 + 2 HF \rightarrow VF_2 + 2 HC1$

 VCl_2 utilisé comme produit de départ était lui-même obtenu par dismutation du trichlorure VCl_2 à 800°C [7] :

606

 $2 \text{ VCl}_3 \rightarrow \text{ VCl}_2 + \text{ VCl}_4$

La pureté des échantillons de VF₂ a été contrôlée par une étude analytique et radiocristallographique. Les mélanges réactionnels ont été préparés en boîte sèche. Les réactions de synthèse ont été conduites dans des tubes d'or, scellés sous atmosphère d'argon. Une température de 700°C et une durée de réaction de 20 heures ont été adoptées. Aucune attaque des tubes d'or par les mélanges réactionnels n'a été décelée.

RESULTATS EXPERIMENTAUX

Le système LiF-VF2

Aucune combinaison nouvelle n'apparaît dans ce système, quelle que soit la composition du mélange réactionnel. Pour un rapport molaire $\text{LiF/VF}_2 = 1$, on n'observe pratiquement aucune réaction entre les produits de départ.Seules quelques raies nouvelles de faible intensité, attribuables au composé Li_3VF_6 , deviennent perceptibles sur le spectre X [8] . Pour un rapport $\text{Li/VF}_2 = 2$, des résultats analogues sont observés, la quantité de Li_3VF_6 formée étant alors un peu plus importante (10 à 15 %). Une réaction de dismutation, que nous discuterons en détail plus loin, semble se produire progressivement:

 $3 VF_2 + 6 LiF \rightarrow 2 Li_3 VF_6 + V$

Le système NaF-VF2

Dans le système NaF-VF₂ une combinaison apparaît : il s'agit du fluorure NaVF₃ [3],[5]. Un examen du spectre de diffraction X du produit obtenu pour NaF/VF₂ = 1, montre cependant que NaVF₃ n'est pas la seule phase présente. On peut en effet identifier la présence en faibles quantités de deux autres phases : Na₃VF₆ et VF₂ [3],[8] . Si on augmente le rapport NaF/VF₂, la quantité de Na₃VF₆ formée croît rapidement : pour NaF/VF₂ = 2, seules apparaissent dans le spectre X les raies dues à Na₃VF₆. Nous en concluons que la formation de NaVF₃ est concurrencée par une réaction de dismutation analogue à celle observée dans le cas du lithium.

Les systèmes KF-VF₂ et RbF-VF₂

Les résultats obtenus sont analogues au cas précédent. Un seul type de combinaison, de formule générale MVF₃, apparaît. pour MF/VF₂ = 1, ces phases ne peuvent cependant être isolées. Sur les spectres X des échantillons obtenus des traces de la phase K_3VF_6 ou Rb_3VF_6 ont pu en effet être mises en évidence [8].

Pour des rapports MF/VF₂ supérieurs à 1, les quantités de M_3VF_6 formées augmentent rapidement. Pour MF/VF₂ = 2, seules apparaissent sur les spectres X les raies attribuables à M_3VF_6 .

Le système CsF-VF2

Dans les conditions où nous avons opéré aucune combinaison ne se forme entre CsF et VF₂. Pour un rapport CsF/VF₂ égal à 1 apparaît Cs₃VF₆, ainsi que la phase limite CsV₂F₆ δ , dont nous avons signalé l'existence lors de l'étude des bronzes Cs_xVF₃ [5][6]. Pour un rapport CsF/VF₂ = 2, seul Cs₃VF₆ a pu être mis en évidence par diffraction X.

INTERPRETATION DES RESULTATS OBTENUS : MECANISME DE LA DISMUTATION

L'expérience montre que, quel que soit le rapport MF/VF₂ relatif au mélange réactionnel, on observe dans les produits obtenus la présence de phases n'appartenant pas au système binaire étudié. Pour interpréter les résultats il est indispensable de considérer l'ensemble du système ternaire M-V-F, dont la figure 1 donne une représentation schématique.

La présence dans les produits obtenus des phases de formulation M_3VF_6 (dans lesquelles le vanadium est au degré d'oxydation + III) s'explique aisément si on admet, comme l'a suggéré M.W. Shafer, une dismutation du vanadium + II. Un tel processus suppose cependant la formation de phases dans

Fig. 1. Représentation schématique du système ternaire M-V-F

lesquelles le vanadium est à un degré inférieur à + II, la plus probable étant le vanadium métallique lui-même.Or la présence de vanadium métallique n'a jamais été mise en évidence de manière sûre dans les produits obtenus [3]. On peut penser que dans les conditions de sa formation le vanadium est dans un état très finement divisé et caractérisé par conséquent par un spectre de poudre très diffus. Il n'est donc pas étonnant que sa présence puisse échapper à un simple contrôle radiocristallographique, surtout si la dismutation n'est que partielle. Lorsque celle-ci est totale en revanche, une étude analytique nous a effectivement révélé la présence du vanadium.

Nous avons mis au point à cet effet une méthode basée sur la différence de solubilité entre les fluorures M_3VF_6 et le vanadium métallique. La présence de métal a été recherchée dans le cas le plus favorable où la dismutation est totale, c'est-à-dire lorsque MF/VF₂ = 2. Au tableau I sont rassemblés les résultats analytiques obtenus dans le cas du potassium. Le fluorure K_3VF_6 dosé par comparaison a été 610

TABLEAU I

Résultats analytiques

Echantillon	2KF + VF ₂ après réaction	K ₃ VF ₆
Couleur Taux en vanadium to al calc.	noire 24,83 %	vert-clair 18,05 %
Taux en vanadium total exp.	23,7 % 23,8 % 23,7 %	$\begin{cases} 16,9 & \$ \\ 16,7 & \$ \\ 16,7 & \$ \end{cases}$
Taux d'insoluble dans l'eau	8,75 %	0 %
Taux d'insoluble calculé pour une dismutation totale	8,28 %	
Taux en vanadium dans l'insoluble	88,5 %* 94,0 %* *	

ramené à la masse d'insoluble obtenue expérimentalement
 ramené à la masse d'insoluble calculée

préparé par interaction en proportions stoechiométriques de KF et de VF₃. Seul le taux en vanadium a été déterminé dans les produits obtenus, la méthode utilisée étant l'oxydo-réduction [9]. Les résultats de l'analyse montrent que le produit de réaction correspond bien à un mélange $2K_3VF_6 + V$, la réaction de dismutation s'écrivant :

 $6 \text{ MF} + 3 \text{ VF}_2 \rightarrow 2 \text{ M}_3 \text{VF}_6 + \text{V}$

Le spectre de diffraction X du résidu insoluble est constitué de quelques raies peu intenses, qui ne correspondent pas à celles du vanadium métallique de structure cubique, mais semblent cependant en dériver. L'indexation des raies observées montre que l'on peut attribuer à cette phase très riche en vanadium une symétrie quadratique avec des paramètres (a = $3,00 \stackrel{+}{-} 0,01$ Å et c = $3,29 \stackrel{+}{-} 0,01$ Å) assez voisins de celui qui caractérise le vanadium cubique (a = 3,04 Å), (tableau II) [10]. L'insoluble obtenu, qui ne contient en fait que 90 % environ de vanadium, semble donc correspondre à une solution solide formée par le vanadium métallique et un autre élément que nous n'avons pas identifié, mais qui est vraisemblablement un peu d'oxygène fixé par le vanadium finement divisé lors de sa manipulation à l'air.

TABLEAU II Spectre Debye-Scherrer du résidu insoluble dans l'eau

Résidu insoluble dans l'eau		Vanadium métallique			
d _{obs} .(Å)	^I obs.	hk1	d _{obs} .(Å)	I _{obs} .	h k l
2,215 2,116 1,498	100 60 15	$\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{array}$	2,140	100	1 1 0
1,299	5 30	1 1 2 2 1 1	1,238	20	2 1 1

Pour des rapports MF/VF_2 inférieurs à 2, la formation des phases MVF_3 mises en évidence dans le cas du sodium, du potassium et du rubidium est concurrencée par la réaction de dismutation. Celle-ci prédomine d'autant plus que le rapport MF/VF_2 est plus élevé.

Le cas du césium est particulier. Aucune phase de formulation $CsVF_3$ ne se formant, on obtient pour $CsF/VF_2 = 1$ un mélange de trois phases ; la réaction globale de dismutation peut s'écrire [5] :

 $4 \text{ CsF} + 4 \text{ VF}_2 \rightarrow \text{ CsV}_2\text{F}_6\delta + \text{Cs}_3^2\text{VF}_6 + \text{V}_6$

En vue d'empêcher la dismutation du vanadium + II, quelques essais de synthèse ont été effectués sous courant d'hydrogène, c'est-à-dire dans des conditions dans lesquelles le difluorure VF₂ est stable [3], [4]. Mais en accord avec les résultats antérieurs de M.W. Shafer, aucune amélioration n'a pu être décelée.

CARACTERISATION DES PHASES NaVF₃, KVF₃ et RbVF₃

Les phases $NaVF_3$, KVF_3 et $RbVF_3$ se présentent sous forme de poudres microcristallines de couleur grise. Elles sont peu solubles dans l'eau. Cette propriété a d'ailleurs été mise à profit pour éliminer dans les échantillons obtenus, les traces de fluorures M_3VF_6 qui se dissolvent rapidement. Ainsi, après lavage sur creuset filtrant toutes les raies parasites ont-elles disparu dans les spectres de diffraction X de KVF_3 et de $RbVF_3$. Dans le cas du sodium il subsiste, comme nous l'avons vu, quelques traces de difluorure VF_2 , difficilement soluble lui aussi.

Etude radiocristallographique

Les résultats obtenus pour KVF_3 et $RbVF_3$ sont analogues à ceux mentionnés par M.W. Shafer. Ils diffèrent par contre pour le composé $NaVF_3$.

Toutes les raies observées des spectres de poudre des fluorures KVF_3 et RbVF_3 peuvent être indexées dans un système cubique simple et sont compatibles avec le groupe d'espace Pm 3m (O $\frac{1}{h}$), caractéristique d'une structure de type perovskite cubique (tableau III). Les valeurs des paramètres cristallins expérimentaux ainsi que des masses spécifiques théoriques et expérimentales sont rassemblées au tableau IV.

 $NaVF_3$ est caractérisé par un spectre de poudre relativement complexe, incompatible avec une structure de type perovskite idéale (tableau V). Une indexation des raies observées permet d'attribuer à cette phase une symétrie orthorhombique (tableau VI). La structure de $NaVF_3$, analogue à celle des autres composés fluorés de formule générale $NaTF_3$ (T = élément 3d), est de type GdFe0₃ (tableau VII) [11].

Les spectres X de NaVF₃ et de Na₃VF₆ comportent une grande analogie et il est difficile de distinguer les raies de faible intensité dues à la présence de traces de Na₃VF₆ de celles, peu intenses également, provenant de la distorsion orthorhombique de NaVF₃. Un simple lavage à l'eau, qui élimine Na₃VF₆, permet cependant de montrer sans ambiguité que NaVF₃ est bien caractérisé par une structure de type GdFeO₃.

612

TABLEAU III Spectre Debye-Scherrer de KVF₃ et RbVF₃

	KVF ₃		RbVF ₃		
h k 1	d _{obs} .(Å)	^I obs.	d _{obs} .(Å)	^I obs.	
100	4,091	33	4,179	5	
1 1 0	2,901	100	2,949	100	
1 1 1	2,374	16	2,407	24	
200	2,058	88	2,085	48	
2 1 0	1,841	8	—	-	
2 1 1	1,683	30	1,704	33	
220	1,457	27	1,477	21	
2 2 1	1,374	5			
3 1 0	1,306	15	1,322	18	
3 1 1	1,244	4	1,260	14	
222	1,911	12	1,206	16	
321	—	-	1,116	25	
400	1,032	7	1,045	11	
4 1 0	1,002	3	0,9851	16	
4 1 1-3 3 0	0,9728	12	—	-	
3 3 1	<u> </u>	-	0,9590	10	
420	0,9216	15	0,9351	20	
332	0,8790	10	0,8913	14	
422	0,8412	25	0,8534	19	
5 1 0-4 3 1	0,8081	30	0,8200	25	
5 1 1-3 3 3	_	-	0,8048	10	

TABLEAU IV

Données radiocristallographiques relatives à KVF_3 et $RbVF_3$

	KVF3	RbVF ₃
Symétrie Paramètre	Cubique	Cubique
Masse spécifique	$\rho_{calc.} = 3,461 \text{ g/cm}^3$	$\rho_{calc.} \approx 4,393 \text{ g/cm}^3$
Masse spécifique exp.	^p obs.=3,38 ⁺ 0,04 g/cm ³	^p obs. ^{=4,14⁺0,04 g/cm³}

TABLEAU V

Spectre Debye-Scherrer de NaVF	3
--------------------------------	---

d _{obs} .(Å)	^I obs.	sin ² θ _{obs} .*	h k 1	$\sin^2 \theta_{calc.}$ *
3,947	100	0,0381	$ \begin{cases} 0 & 0 & 2 \\ 1 & 1 & 0 \end{cases} $	0,0382 0,0380
3,541	8	0,0474	111	0,0475
2,836	30	0,0739	020	0,0736
2,788	70	0,0764	1 1 2	0,0762
2,742	25	0,0791	200	0,0785
2,521	2	0,0934	120	0,0932
2,467	14	0,0976	210	0,0968
2,401	8	0,1031	121	0,1028
2,364	20	0,1063	$\begin{cases} 1 & 0 & 3 \\ 2 & 1 & 1 \end{cases}$	0,1056 0,1063
2.185	12	0.1245	1 1 3	0,1236
2,124	12	0,1317	122	0.1314
1,971	80	0,1530	$\begin{cases} 2 & 2 & 0 \\ \end{array}$	0,1520
1,926	10	0,1599	221	0,1526 0,1617
1,910	6	0,1626	$\begin{cases} 2 & 0 & 3 \\ 0 & 2 & 3 \end{cases}$	0,1644 0.1657
1,788	12	0,1858	1 3 0	0,1853
1,764	26	0,1910	$ \begin{cases} 2 & 2 & 2 \\ 1 & 1 & 4 \end{cases} $	0,1902 0,1906
1,744	12	0,1954		0,1947 0,1948
1,967	8	0,2061	3 1 1	0,2044
1,631	18	0,2231	1 3 2	0,2234
1,619	20	0,2268	024	0,2262
1,601	10	0,2318	204	0,2310
1,593	45	0,2343	3 1 2	0,2338
1,395	12	0,3052	$ \begin{cases} 0 & 4 & 1 \\ 2 & 2 & 4 \end{cases} $	0,3039 0,3046

* Valeurs obtenues pour Cu(K α) = 1,54178 Å

614

TABLEAU VI

Données radiocristallographiques relatives à NaVF₃

Symétrie	Orthorhombique
Paramètres	$\begin{cases} a = 5,502 \stackrel{+}{-} 0,008 \stackrel{\circ}{A} \\ b = 5,678 \stackrel{+}{-} 0,008 \stackrel{\circ}{A} \\ c = 7,886 \stackrel{+}{-} 0,008 \stackrel{\circ}{A} \end{cases}$
Masse spécifique calc. pour Z = 4	$^{\circ}$ calc. = 3,531 g/cm ³
Masse spécifique exp.	$\rho_{\rm obs.} = 3,44 \stackrel{+}{-} 0,04 \text{ g/cm}^3$

Rayon ionique apparent du vanadium + II dans les fluorures MVF_3 (M = Na, K, Rb)

Au tableau VII nous avons reproduit les données radiocristallographiques relatives aux fluorures MTF₃ selon D. Babel [11]. Pour chaque élément M considéré, le classement est établi par ordre de volume moléculaire $V(A^3)$ croissant (ou V/Z (A^3) si Z \neq 1). Les composés du vanadium s'intercalent dans les trois cas entre les composés homologues du fer et du manganèse, mais se placent plus près de ceux du fer. Si on attribue au rayon ionique de l'ion Fe $^{2+}$ la valeur 0,74 Å, selon les données de R.D. Shannon et C.T. Prewitt, on peut donc attribuer au rayon ionique de l'ion V^{2+} une valeur proche de 0,75 Å [12] . Celle-ci conduit à un facteur de tolérance de Goldschmidt t compatible, pour le potassium et le rubidium, avec une structure de type perovskite idéale $(0,88 \leq t \leq 1,00)$. En revanche dans le cas du sodium, la valeur de t est plus faible et elle implique une structure de type GdFeO_z (0,78 \leq t \leq 0,88).Pour le césium enfin, la valeur calculée est t ~ 1,04. Elle permet de prévoir pour CsVF₂, s'il existait, une structure de symétrie hexagonale, vraisemblablement celle de BaTiO_z, dont CsFeF_z et CsMnF_z sont d'ailleurs isotypes [11].

616

TABLEAU VII

Données radiocristallographiques relatives aux composés MTF₃

Phases	a (Å)	o b(Å)	c (Å)	β(≗)	t	V/Z (Å ³)
NaNiF ₃	5,360	5,525	7,705		0,83	57,0
NaZnF ₃	5,400	5,569	7,756		0,82	58,3
NaCuF ₃	2(5,505)	2(5,685)	7,721	86,5	0,81	58,9
NaCoF ₃	5,420	5,603	7,793		0,81	59,2
NaFeF ₃	5,46	5,66	7,856		0,80	60,7
NaVF ₃	5,502	5,678	7,886		0,80	61,6
NaCrF ₃	2(5,695)	2(5,885)	7,639	87,8	0,78	64,0
NaMnF ₃	2(5,568)	2(5,760)	8,000		0,78	64,1
KNiF ₃	4,012				0,96	64,6
KZnF3	4,055				0,95	66,7
KCoF ₃	4,069				0,94	67,4
KFeF ₃	4,120				0,94	69,9
KVF3	4,132				0,93	70,5
KMn F ₃	4,186				0,91	73,3
RbZnF ₃	4,110				1,00	69,4
RbCoF ₃	4,116				1,00	69,7
RbFeF ₃	4,172				0,99	72,6
RbVF ₃	4,182				0,98	73,1
RbMnF ₃	4,242				0,96	76,3

CONCLUSIONS

Un seul type de combinaisons ternaires apparaît pour l'ensemble des systèmes MF-VF₂ étudiés. Il correspond à un rapport molaire MF/VF_2 égal à 1 et il est limité à M = Na, K et Rb. Dans nos conditions expérimentales n'apparaît en particulier aucun composé de formule générale $M_3T_2F_7$ ou M_3TF_4 , comme celles observées pour la plupart des autres éléments 3d de degré d'oxydation + II. Le vanadium + II, par le petit nombre de combinaisons qu'il forme avec les fluorures alcalins se rapproche ainsi du chrome +II[13]

Les phases MVF_3 cristallisent selon des structures de type perovskite idéale ou déformée, qui confèrent une assez grande stabilité à l'ion V^{2+} . Il semble que l'absence de phases correspondant à un rapport MF/VF_2 plus élevé pour Na, K et Rb et l'absence d'un fluorure $CsVF_3$, s'expliquent par la tendance du vanadium + II à se dismuter en vanadium + III et en métal.

Les calculs de variation de volume qu'entraînent les réactions de dismutation montrent qu'un accroissement de pression est de nature à entraver la dismutation. Les quelques essais que nous avons effectués en ce sens ne se sont toutefois pas montrés très concluants à cet égard.

La tendance à la dismutation du vanadium + II peut être illustrée par quelques données thermodynamiques [14]. L'enthalpie standard de sublimation du vanadium, ΔH° =123 kcal/at., est supérieure à celle de tous les autres éléments 3d, sa stabilité est donc très élevée. Par contre l'enthalpie standard d'ionisation,correspondant à la réaction $M^{2+}_{(g)} \xrightarrow{\leftarrow} M^{3+}_{(g)}$ +e⁻ est une des plus faibles dans le cas du vanadium, montrant ainsi une grande aptitude à former le degré d'oxydation + III.

REMERCIEMENTS

Nous remercions T. Plante pour l'aide qu'il nous a apportée dans la réalisation de ce travail.

REFERENCES

- 1 R. Colton et J.H. Canterford, Halides of the first row transitions metals, Whiley Interscience, London, (1969).
- 2 J.W. Stout et W.O.J. Boo, J Appl. Phys., 37, (1966), 966.
- 3 M.W. Shafer, Mat. Res. Bull., 4, (1969), 905.
- 4 C. Cros, R. Feurer et M. Pouchard, J. Fluorine Chem, <u>5</u>, (1975), 457.
- 5 C. Cros, R. Feurer, M. Pouchard et P. Hagenmuller, Mat. Res. Bull., <u>10</u>, (1975), 383.
- 6 R.Feurer, thèse d'ingénieur-docteur, Univ. de Bordeaux I, (1974).
- 7 G. Brauer, Handbuch du Präparativen Anorganischen Chemie, F. Enke Verlag, Stuttgart, (1964).
- 8 J.C. Cretenet, thèse de doctorat, Univ. de Paris VI, (1971).
- 9 G. Charlot, Les méthodes de la chimie analytique, Analyse quantitative minérale, Masson, Paris, (1961).
- 10 X-ray Powder Data Files, American Society for Testing Materials, Philadelphia, 1-5, (1960).
- 11 D. Babel, Structure and bonding, vol. 3, chap. 1, Springer Verlag, Berlin, (1967).
- 12 R.D. Shannon et C.T. Prewitt, Acta cryst., <u>B25</u>, (1969), 925.
- 13 D. Dumora, thèse de doctorat, Univ. Bordeaux I, (1971).
- 14 K.B. Harvey et G.B. Porter, Introduction à la Chimie Physique Minérale, Dunod, Paris, (1967).